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Abstract
We show that a type of linear superposition principle works for several nonlinear
differential equations. Using this approach, we find periodic solutions of
the Kadomtsev–Petviashvili equation, the nonlinear Schrödinger equation,
the λφ4 model, the sine-Gordon equation and the Boussinesq equation by
making appropriate linear superpositions of known periodic solutions. This
unusual procedure for generating solutions of nonlinear differential equations
is successful as a consequence of some powerful, recently discovered, cyclic
identities satisfied by the Jacobi elliptic functions.

PACS numbers: 02.30.Jr, 02.30.Gp, 05.45.Yv

1. Introduction

The fact that Jacobi elliptic functions arise naturally as travelling wave solutions of many
nonlinear systems has been known for quite some time (see, for example, [1]). Although for
the solitary wave solutions of these nonlinear equations, there is no superposition principle
(except when the solitary waves are far apart), for the periodic solutions the situation turns out
to be quite different. It has recently been shown [2] that certain specific linear combinations of
known periodic solutions of the Korteweg–de Vries (KdV) and modified Korteweg–de Vries
(mKdV) equations as well as λφ4 theory, also satisfy these equations. This unexpected result
is a consequence of some remarkable, recently established, identities involving Jacobi elliptic
functions [3]. Basically, the identities take the cross terms generated by the nonlinear terms
in the KdV and mKdV equations and convert them into a manageable form. The purpose
of this paper is to show that such a procedure also works for other well-known nonlinear
equations, namely the Kadomtsev–Petviashvili (KP) equation, the nonlinear Schrödinger
equation (NLSE), the λφ4 model, the sine-Gordon equation and the Boussinesq equation. It
should be noted that the above list includes both the integrable and nonintegrable systems.
These equations are of interest in several areas of physics. The NLSE governs the propagation
3 Permanent address: Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, Orissa, India.
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of an electromagnetic wave in a glass fibre, or the spatial evolution of an electromagnetic
field in a planar waveguide. Temporal solitons described by the NLSE were first observed in
1980 [4], and the first confirmation and studies of spatial solitons in planar waveguides were
reported in 1988 [5, 6]. Similarly, the λφ4 and the sine-Gordon equations arise in several areas
of condensed matter physics.

At this point one might wonder if the idea of superposition was used earlier to obtain
periodic solutions of nonlinear equations. So far as we are aware, the answer to this question is
no. However, mention might be made of some recent work [7] where Jacobi elliptic function
expansion methods have been used to construct some exact periodic solutions of several
nonlinear wave equations. We might add here that similar methods had also been proposed
earlier [8] to obtain the shock and solitary wave solutions of nonlinear equations.

2. The Kadomtsev–Petviashvili (KP) equation

The KP equation is a two-dimensional generalization of the KdV equation and is given by

(ut − 6uux + uxxx)x + 3uyy = 0. (1)

Properties of the KP equation are discussed in many texts [1]. In particular, the simplest,
periodic, cnoidal travelling wave solution is

u1(x, y, t) = −2α2 dn2(ξ1,m) + βα2 ξ1 ≡ α(x + γαy − b1α
2t) (2)

where α, γ,m and β are constants, and the ‘velocity’ b1 is given by

b1 = 8 − 4m − 6β + 3γ 2. (3)

In this paper, for Jacobi elliptic functions, we use the standard notation dn(ξ,m), sn(ξ,m),

cn(ξ,m), where m is the elliptic modulus parameter (0 � m � 1). Solution (2) remains
unchanged when x is increased by 2K(m)/α, where K(m) is the complete elliptic integral of
the first kind [9]. In the limiting case m = 1 (and β = 0), one recovers the familiar single
soliton form −2α2sech2(α(x + γαy − b1α

2t)).
We will make suitable linear combinations of solution (2) and show that the result is also

a periodic solution of the KP equation. Our procedure consists of adding terms of the kind
given in (2) but centred at p equally spaced points along the period 2K(m)/α, where p is any
integer. The p-point solution is

up(x, y, t) = −2α2
p∑

i=1

d2
i + βα2 di ≡ dn

[
ξp +

2(i − 1)K(m)

p
,m

]
(4)

ξp ≡ α(x + γαy − bpα2t).

Clearly, p = 1 is the original solution, but for any other p, we have expressions which, as we
shall show, also solve the KP equation. For convenience, we define the quantities si and ci in
analogy with the quantity di defined above:

si ≡ sn

[
ξp +

2(i − 1)K(m)

p
,m

]
ci ≡ cn

[
ξp +

2(i − 1)K(m)

p
,m

]
. (5)

The KP equation contains the KdV operator ut − 6uux + uxxx . It has been shown in detail
in [2] that equation (4) with γ = 0 is a solution of the KdV equation. The proof is based on
the identity

p∑
i<j

d2
i d

2
j = A1(p,m)

p∑
i=1

d2
i + A2(p,m). (6)
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Figure 1. u1(x, y, t = 0) versus (x, y) for m = 0.95, α = γ = 1, β = 0.

This is one of many powerful new identities [3] which reduce by 2 (or a larger even number)
the degree of cyclic homogeneous polynomials in Jacobi elliptic functions. The constants
A1(p,m) and A2(p,m) in identity (6) can be evaluated in general by choosing any specific
convenient value of the argument ξ of the Jacobi elliptic functions. The results for A1(p,m)

for small values of p are

A1(p = 2,m) = 0 A1(p = 3,m) = −2(m − 1 + q2)

1 − q2
(7)

A1(p = 4,m) = −2
√

1 − m

where

q ≡ dn(2K(m)/3,m). (8)

The limiting values at m = 0, 1 are also particularly simple:

A1(p,m = 0) = − 1
3 (p − 1)(p − 2) A1(p,m = 1) = 0. (9)

Taking expression (4) and using identity (6), the left-hand side of the KP equation (1) becomes

4mα5{8 − 4m − 6β − bp + 12A1(p,m)} d

dx

p∑
i=1

sicidi + 12mγα4 d

dy

p∑
i=1

sicidi. (10)

Clearly, this vanishes if the velocity is given by

bp = 8 − 4m − 6β + 12A1(p,m) + 3γ 2. (11)

Thus for this choice of velocity, the KP equation is solved by our p-point expression (4).
Effectively, the new solutions of the KP equation and the corresponding solutions of the KdV
equation have a difference of 3γ 2 in their velocities bp. Note that as in the KdV case, the
results for bp can be positive or negative depending on the values of the parameters [2]. The
behaviour of u1 for the parameters m = 0.95, α = γ = 1, β = 0 is shown in figure 1.

In addition to the solution (2), another well-known periodic solution of the KP equation (1)
of period 4K(m) is

v1(x, y, t) = α2[msn2(η1,m) ± √
m cn(η1,m) dn(η1,m)] η1 ≡ α(x + γαy − q1α

2t)

(12)

with velocity q1 = (−1 − m + 3γ 2).
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Starting from this solution, we can again obtain, by superposition, periodic solutions of
the KP equation of period 4K(m)/p in case p is an odd integer. The general p-point solution
is given by

vp(x, y, t) = α2
p∑

i=1

[
ms̃2

i ± √
m c̃i d̃ i

]
p odd (13)

where we define

s̃i ≡ sn

[
ηp +

4(i − 1)K(m)

p
,m

]
c̃i ≡ cn

[
ηp +

4(i − 1)K(m)

p
,m

]
(14)

d̃i ≡ dn

[
ηp +

4(i − 1)K(m)

p
,m

]
.

As has been shown in detail in [2], equation (13) with γ = 0 is a solution of the KdV equation
with velocity

qp = −(1 + m) − 6[B1(p,m) − C1(p,m)] (15)

where the quantities B1(p,m) and C1(p,m) come from the following identities:

m

p∑
i<j

s̃i s̃j = B1(p,m) m

p∑
i<j<k

s̃i s̃j s̃k = C1(p,m). (16)

It is easily checked that even in the KP case (γ �= 0), equation (13) is an exact solution, the
only difference being that the velocity in the KP case is larger by 3γ 2. As an illustration, for
the p = 3 case, it is easily shown that [3]

B1(3,m) = −(1 − q2) C1(3,m) = −m/(1 − q2) (17)

so that the velocity of the KP soliton is given by

q3 = −1 − m + 6(1 − q2) − 6m

1 − q2
+ 3γ 2 (18)

where q has been defined in equation (8). Note that for p even, we do not obtain any new
solutions. To illustrate our results, in figure 2 we plot v3(x, y) at time t = 0 for the choice
α = γ = 1 and m = 0.95.

3. The nonlinear Schrödinger equation

The NLSE with both attractive and repulsive nonlinearity has found many physical applications
in several diverse areas including fibre optics,Bose–Einstein condensates and waveguides [10].

3.1. Case I: attractive nonlinearity

The NLSE with attractive nonlinearity is given by (h̄ = 2m = 1)

iut + uxx + u|u|2 = 0 (19)

where without any loss of generality we have fixed the coefficient of the nonlinear term to be
unity. As usual, one starts with the ansatz [1]
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Figure 2. v3(x, y, t = 0) versus (x, y) for m = 0.95, α = γ = 1.

u(x, t) = r(ξ) ei(θ(ξ)+nt) ξ ≡ x − vt (20)

which on substituting in equation (19) yields

θ ′(ξ) = 1

2

(
v +

A

r2

)
(21)

r ′2(ξ) = − r4

2
+

(
n − v2

4

)
r2 − B

2
− A2

4r2
(22)

where prime denotes a derivative with respect to the argument (ξ ) and A and B are constants
of integration. Thus, the whole problem reduces to finding the solutions of equation (22), after
which θ is easily obtained by using equation (21) and performing one integration.

The well-known soliton solution of equation (22) is

r(ξ) =
√

2 sech(ξ) θ = vξ

2
A = B = 0 v2 = 4(n − 1) (23)

which is valid only for n � 1. It may be noted that a somewhat more general solution
with arbitrary amplitude α is easily obtained, since if u(x, t) is a solution of the NLSE, then
αu(αx, α2t) is also a solution of the same equation.

The two simplest, periodic, cnoidal travelling wave solutions of equation (22) are
(ξ1 = x − v1t)

r1(ξ) =
√

2 dn(ξ1) θ1 = v1ξ1

2
A = 0 B = 4(1 − m) v2

1 = 4(n + m − 2) (24)

r1(ξ) =
√

2m cn(ξ1) θ1 = v1ξ1

2
A = 0 B = −4m(1 − m) v2

1 = 4(n + 1 − 2m). (25)

In the limiting case m = 1, one recovers the familiar soliton solution (23).
We shall now show that suitable linear combinations of solutions (24) and (25) are also

solutions of equation (22). Consider first solution (24). Our solutions consist of adding terms
of the kind given in this equation but centred at p equally spaced points along the period
2K(m), where p is any integer. The p-point solution is

rp(x, t) =
√

2
p∑

i=1

di di ≡ dn

[
ξp +

2(i − 1)K(m)

p
,m

]
ξp ≡ (x − vpt). (26)
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Clearly, p = 1 is the original solution, but for any other p, we have solutions of period
2K(m)/p.

In order to verify that expression (26) is indeed a solution of equation (22), one needs the
identities (

p∑
i=1

di

)2

=
p∑

i=1

d2
i + A(p,m)

(
p∑

i=1

di

)4

=
p∑

i=1

d4
i + C(p,m)

p∑
i=1

d2
i + D(p,m)

m2
p∑

i<j

sicisj cj = E(p,m)

p∑
i=1

d2
i + F(p,m)

(27)

which can easily be established by following the procedure discussed in [3]. The general
expression for the velocity vp is

v2
p = 4[n + m − 2 − C(p,m) − 2E(p,m)]. (28)

Some explicitly computed values of the constants C(p,m) and E(p,m) are

C(2,m) = 4E(2,m) = 4
√

1 − m C(3,m) = 4E(3,m) = 8mq

1 − q2
(29)

C(4,m) = 4E(4,m) = 4t̃ (2 + t̃ + 2t̃2)

where q is given by equation (8) and t̃ is given by

t̃ ≡ (1 − m)1/4. (30)

On the other hand, for any p at m = 0, C(p, 0) = 4E(p, 0) = 4(p2−1)

3 and at m = 1,

C(p, 1) = E(p, 1) = 0. It then follows from equation (28) that the solution rp as given by
equation (26) is valid only if n � 2p2, and in this case v2 changes from 4(n−2p2) to 4(n−1)

as m goes from 0 to 1.
For odd p, using solution (25), we obtain the following solution of the NLSE (22) by

linear superposition:

rp(x, t) =
√

2m

p∑
i=1

c̃i c̃i ≡ cn

[
ηp +

4(i − 1)K(m)

p
,m

]
ηp ≡ (x − vpt). (31)

In order to verify that (31) is indeed a solution to the NLSE (22) one needs the identities(
p∑

i=1

c̃i

)2

=
p∑

i=1

c̃2
i + G(p,m)

(
p∑

i=1

c̃i

)4

=
p∑

i=1

c̃4
i + H(p,m)

p∑
i=1

c̃2
i + I (p,m)

m2
p∑

i<j

s̃i d̃i s̃j d̃j = J (p,m)

p∑
i=1

c̃2
i + K(p,m)

(32)

which can be established following the procedure discussed in [3]. The general expression for
the velocity vp is

v2
p = 4[n + 1 − 2m − mH(p,m) − 2J (p,m)]. (33)
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Some explicitly computed values of the constants H(p,m) and J (p,m) are

mH(3,m) = 4J (3,m) = −4q

[
q + 2

(1 + q)2
+

q

1 − q2

]
(34)

where q is given by equation (8). Thus v2 varies from 4(n + 9) to 4(n − 1) as the elliptic
modulus parameter m changes from 0 to 1.

On the other hand, for even p, we have obtained the following solution of the NLSE (22):

rp(x, t) =
√

2
p∑

i odd

[di − di+1]. (35)

In order to verify that equation (35) is a solution of the NLSE (22) one needs the identities(
p∑

i odd

[di − di+1]

)2

=
p∑

i=1

d2
i + P(p,m)

(
p∑

i odd

[di − di+1]

)4

=
p∑

i=1

d4
i + L(p,m)

p∑
i=1

d2
i + M(p,m)

m2


 p∑

i+j even

sicisj cj −
p∑

i+j odd

sicisj cj


 = N(p,m)

p∑
i=1

d2
i + Q(p,m)

(36)

which can be established following the procedure discussed in [3]. The general expression for
the velocity vp is

v2
p = 4[n + m − 2 − L(p,m) − 2N(p,m)]. (37)

Some explicitly computed values of the constants L(p,m) and N(p,m) are

L(2,m) = 4N(2,m) = −4
√

1 − m L(4,m) = 4N(4,m) = −4t̃ (2 − t̃ + 2t̃2) (38)

where t̃ is as given by equation (30). Thus for p = 2 [4], v2 varies from 4(n + 4)[4(n + 16)]
to 4(n − 1) as m changes from 0 to 1. Generalizing the results in equations (31) or (35), one
finds that v2 varies from 4(n + p2) to 4(n − 1) as m changes from 0 to 1.

3.2. Case II: repulsive nonlinearity

The NLSE with repulsive nonlinearity is given by

iut + uxx − u|u|2 = 0. (39)

We again start with the ansatz given by equation (20) and on following the same steps as given
in equations (20) to (22) it is easily seen that the θ equation (equation (21)) is the same as
before while the r equation is almost the same except for the sign of the r4 term. In particular,
the r equation is now given by

r ′2(ξ) = r4

2
+

(
n − v2

4

)
r2 − B

2
− A2

4r2
. (40)

The well-known soliton solution to this equation is

r(ξ) =
√

2 tanh(ξ) θ = vξ

2
A = 0 B = −4 v2 = 4(n + 2). (41)

The simplest, periodic, cnoidal travelling wave solution to equation (40) is

r1(ξ) =
√

2m sn(ξ1) θ1 = v1ξ1

2
A = 0 B = −4m v2

1 = 4(n + 1 + m).

(42)
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For odd p, using solution (42), we obtain the following solutions of the NLSE (22) by
linear superposition:

rp(x, t) =
√

2m

p∑
i=1

s̃i s̃i ≡ sn

[
ηp +

4(i − 1)K(m)

p
,m

]
ηp ≡ (x − vpt). (43)

In order to verify that equation (43) is a solution to the NLSE (40) one needs the identities(
p∑

i=1

s̃i

)2

=
p∑

i=1

s̃2
i + R(p,m)

(
p∑

i=1

s̃i

)4

=
p∑

i=1

s̃4
i + S(p,m)

p∑
i=1

s̃2
i + T (p,m)

p∑
i<j

c̃i d̃ i c̃j d̃j = U(p,m)

p∑
i=1

s̃2
i + Y (p,m)

(44)

which can be established by following [3]. The general expression for the velocity vp is

v2
p = 4[n + 1 + m + mS(p,m) − 2U(p,m)]. (45)

Some explicitly computed values of the constants H(p,m) and J (p,m) are

mS(3,m) = −4U(3,m) = 4m

[
1

1 − q2
− 1 − q2

m

]
(46)

where q is given by equation (8). Thus v2 changes from 4(n + 9) to 4(n + 2) as m changes
from 0 to 1.

For even integer p, the linear superposition of elementary solutions does not work.
However, remarkably enough we find that the products of elementary solutions are also
solutions. For example, the solution for p = 2 is

r2(x, t) =
√

2 ms1s2 (47)

and the corresponding velocity is given by v2
2 = 4(n + 4 − 2m). Generalization to higher even

values of p is straightforward.

3.3. Solutions with A �= 0

It may be noted that since A = 0 for all the solutions discussed so far, the expressions for θ

were rather trivial. One way of obtaining a solution with A �= 0 is to start with the ansatz

r2(ξ) = 2 dn2(ξ) + α (48)

where α is a constant. It is easily checked that (48) is a solution to the NLSE (22) provided

α = 2

3

(
n − 2 + m − c2

4

)
A2 = 4α

[
α2 −

(
n − c2

4

)
α + 2(1 − m)

]
(49)

B = −3α2 + 4

(
n − c2

4

)
α − 4(1 − m).

Starting from the solution (48) we can obtain a class of solutions by an appropriate linear
superposition. For example, the 2-point solution is

r2(ξ) = 2
(
d2

1 + d2
2

)
+ α. (50)
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It is easily checked that this is indeed a solution provided

α = 2

3

(
n − 2 + m − c2

4

)
B = −3α2 + 4

(
n − c2

4

)
α − 16(1 − m)

A2 = 4

[
α3 −

(
n − c2

4

)
α2 + 8(1 − m)α + 8(1 − m)

(
n + 2 − m − c2

4

)]
.

(51)

Generalization to arbitrary p is straightforward.

4. The λφ4 model

The kink (domain wall) solutions to the λφ4 field theory in (1 + 1) dimensions

φxx − φtt = λφ(φ2 − a2) (52)

have been widely discussed in the literature [11]. The famous static kink solution is

φ(x) = a tanh(
√

λ/2 ax) (53)

from which the time-dependent solution

φ(x, t) = a tanh

[√
λ

2(1 − v2)
a(x − vt)

]
(54)

is immediately obtained by Lorentz boosting. Therefore, to begin with, we shall discuss
only the static periodic kink solutions in case v2 < 1 (and λ > 1). Later, we shall discuss
time-dependent solutions with v2 > 1 (or λ < 1).

4.1. Static periodic kink solutions

It is well known that the static periodic kink solution to the field equation (52) is

φ1(x) =
√

2m

1 + m
a sn(η1,m) η1 ≡

√
λ

1 + m
ax. (55)

For any odd integer p, we find the following static kink solutions of the λφ4 field theory
by a specific linear superposition of the basic solution (55):

φp(x) =
√

2mαa

p∑
i=1

s̃i p odd (56)

where s̃i , c̃i , d̃ i are as given in equation (14) with ηp ≡ √
λαax. In order to verify that

equation (56) is a static periodic kink solution to the λφ4 theory field equation (52), one needs
the identity [3] (

p∑
i=1

s̃i

)3

=
p∑

i=1

s̃3
i + V (p,m)

p∑
i=1

s̃i (57)

and then α is given by

α = 1√
1 + m + 2mV (p,m)

. (58)

As an illustration, consider p = 3. V (3,m) is given by

mV (3,m) = 3

[
m

1 − q2
− (1 − q2)

]
(59)

where q is defined in equation (8). Note that α varies from 1/3 to 1/
√

2 as m varies from
0 to 1.
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Figure 3. φ1(x) (largest amplitude curve), φ2(x) and φ3(x) (smallest amplitude curve) for
m = 0.98, λ = a = 1.

For even integer p, the linear superposition of elementary solutions does not work.
However, remarkably enough we find that even in this case, the products of elementary
solutions are solutions. For example, the solution for p = 2 is

φ2(x) =
√

2 mαas1s2 (60)

where s1,2 are as defined in equation (5) with ξ ≡ √
λαax. Using the identities derived in [3],

it is easily shown that (60) is a static periodic kink solution to the field equation (52) provided

α = 1√
2(2 − m)

. (61)

Note that α varies from 1/2 to 1/
√

2 as m varies from 0 to 1. Generalization to arbitrary
even p is straightforward. It is thus clear that for arbitrary integer p, for static periodic kink
solutions of λφ4 theory, α will vary from 1/p to 1/

√
2 as m varies from 0 to 1. For the values

m = 0.98 and λ = a = 1, we plot φ1(x) from equation (55), φ2(x) from equation (60) and
φ3(x) from equation (56) in figure 3.

4.2. Periodic time-dependent kink solutions

While in the relativistic field theory context with λ > 0, equations (53) and (55) are the only
solutions of λφ4 field theory, in the condensed matter physics context, where velocity v can
exceed velocity of sound (optical modes), or for relativistic case with λ < 0, one also has
another soliton solution given by

φ(x, t) =
√

2 a sech(β(x − vt)) β = a

√
λ

(v2 − 1)
(62)

which is real if either λ < 0 (and v2 < 1) or v2 > 1 (and λ > 0).
The corresponding periodic soliton solutions to equation (52) are well known and given

by [12]

φ1(ξ) =
√

2

2 − m
a dn(ξ1,m) ξ1 = a

√
λ

(2 − m)
(
v2

1 − 1
) (x − vt) (63)

φ1(η) =
√

2m

2m − 1
a cn(η1,m) η1 = a

√
λ

(2m − 1)
(
v2

1 − 1
) (x − vt). (64)
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Note that solution (64) is valid only for 1/2 < m < 1 and both solutions (63) and (64) are
only valid for v2 > 1 (and λ > 0) or λ < 0 (and v2 < 1).

Appropriate linear superpositions of solutions (63) and (64) are also periodic time-
dependent kink solutions. For example, by using the linear superposition of solutions (63),
we have the following solution to the field equation (52), which is valid for any integer p:

φp(ξ) =
√

2 aα

p∑
i=1

di (65)

where di is as defined in equation (4) with ξp = a
√

λ
v2

p−1α(x − vpt). In order to prove that

this is a solution, one needs the identity(
p∑

i=1

di

)3

=
p∑
i

d3
i + W(p,m)

∑
i

di (66)

which is easily proved following [3]. Using this identity one finds that (65) is a solution
provided

α2 = 1

[2 − m + W(p,m)]
. (67)

Some explicitly computed values of W(p,m) are

W(2,m) = 3
√

1 − m W(3,m) = 6mq

1 − q2
W(4,m) = 3t̃[2 + t̃ + 2t̃2] (68)

where t̃ is as defined in equation (30) and q is given by equation (8). Further, W(p, 0) = p2−1,
while W(p, 1) = 0.

For any odd integer p, we also have the following solution to the field equation (52) by
linear superposition

φ(η) =
√

2maα

p∑
i=1

c̃i (69)

where c̃i is as defined in equation (14) with ηp = a
√

λ
v2

p−1α(x − vpt). In order to prove that

this is a solution, one needs the identity [3](
p∑

i=1

c̃i

)3

=
p∑
i

c̃3
i + X(p,m)

p∑
i=1

c̃i . (70)

Using this identity one finds that (69) is a solution provided

α2 = 1

[2m − 1 + 2mX(p,m)]
. (71)

For example, one can check [3] that

X(3,m) = −6(1 − m + q) +
6q2

1 − q2
(72)

with q being given by equation (8), so that unlike the p = 1 case, this is an acceptable solution
for all values of m (0 � m � 1).

Similarly, for even integer p, we have solutions of the form

φ(ξ) =
√

2 aα

p∑
i odd

[di − di+1] (73)



10096 F Cooper et al

where di is as defined in equation (5) with ξp = a
√

λ
v2

p−1α(x − vpt). It is easily checked that

this is an exact solution provided

α = 1

[2 − m − 6
√

1 − m]1/2
. (74)

This solution is only valid in a very narrow range of values of m corresponding to real values
of α.

5. Sine-Gordon field theory

In recent years, both sine-Gordon and λφ4 field theory have received considerable attention
[1, 11]. In particular, sine-Gordon theory is the only relativistically invariant field theory
having true soliton solutions. The equation under consideration is

φxx − φtt = sin φ. (75)

5.1. Static soliton solution by linear superposition

The well-known static one-soliton solution of this equation is given by

φ(x) = 4 tan−1 e±x. (76)

The corresponding time-dependent solution is easily obtained by Lorentz boosting and hence
without any loss of generality we shall restrict our discussion to the static solution only (except
when v2 > 1). Solution (76) can also be written in the alternative form

sin

(
φ(x)

2

)
= sech x. (77)

The two corresponding periodic static soliton solutions are well known and given by [1]

sin

(
φ(x)

2

)
= dn(x,m) (78)

sin

(
φ(x)

2

)
= cn(x/

√
m,m) m > 0. (79)

For any odd integer p, we obtain the following periodic static soliton solutions by linear
superposition:

sin

(
φ(x)

2

)
= α

p∑
i=1

d̃ i (80)

where d̃ i is as defined in equation (14) with ηp ≡ αx, while α is given by

α2 = 1

[p + A(p,m) + mR(p,m)]
. (81)

Here A(p,m) and R(p,m) are as defined by equations (27) and (44) respectively, and with
this choice of α, one obtains

cos

(
φ(x)

2

)
= √

m α

p∑
i=1

s̃i . (82)
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Note that use has been made of the identities [3]

s̃1(c̃2 + · · · + c̃p) + c.p. = 0 s̃1(d̃2 + · · · + d̃p) + c.p. = 0
(83)

d̃1(c̃2 + · · · + c̃p) + c.p. = 0

in proving that (80) is indeed a solution to the field equation (75). For p = 3 the values of the
constants are

A(3,m) = 2q(q + 2) mR(3,m) = 2(q2 − 1) (84)

where q is given by equation (8), so that α = 1/(1 + 2q) changes from 1/3 to 1 as m varies
from 0 to 1.

Another solution valid for any odd integer p is

sin

(
φ(x)

2

)
= α

p∑
i=1

c̃i (85)

where c̃i is as defined in equation (14) with ηp ≡ αx/
√

m. This solution is strictly valid only
if m > 0. It is easily checked that this is indeed a solution to the field equation (75) provided

α2 = 1

[p + G(p,m) + R(p,m)]
(86)

where G(p,m) and R(p,m) are as defined by equations (23) and (40), respectively. Note that
with this choice of α

cos

(
φ(x)

2

)
= α

p∑
i=1

s̃i . (87)

For p = 3,G(3,m) is given by

G(3,m) = −2q(q + 2)

(1 + q)2
(88)

where R(3,m) is as given by equation (84), so that α = 1+q

1−q
(m > 0).

Similarly, for p = 2 we have the solution

sin

(
φ(x)

2

)
= α

2∑
i=1

di (89)

where di is as defined in equation (5) with ξ2 ≡ αx. It is easily checked that this is indeed a
solution of the field equation (75) provided

α = 1

1 +
√

1 − m
(90)

so that α varies between 1/2 and 1 as m changes from 0 to 1. Note that with this choice of α

cos

(
φ(x)

2

)
= mαs1s2. (91)

In figure 4, we have plotted sin[φ/2] versus x for p = 1, 2, 3 corresponding to the right-hand
side of equations (78), (89) and (80).

Another solution for p = 2 is

sin

(
φ(x)

2

)
= α(d1 − d2) (92)

where di is as defined in equation (5) with ξ2 ≡ αx. It is easily checked that this is indeed a
solution to the field equation (75) provided 0 < m � 1 since α given by

α = 1

1 − √
1 − m

(93)

diverges at m = 0.



10098 F Cooper et al

-10 -5 5 10
x

0.2

0.4

0.6

0.8

1

Figure 4. sin[φ(x)/2] for p = 1, 2, 3. Increasing p decreases the amplitude and increases the
frequency.

5.2. Periodic time-dependent solutions

As in the λφ4 field theory case, in this case also we are able to obtain new solutions by linear
superposition which are only valid for v2 > 1. In particular, if p is any odd integer, the new
periodic time-dependent solution is given by

sin

(
φ(x)

2

)
= √

mα

p∑
i=1

s̃i (94)

where s̃i is as defined in equation (14) with ηp ≡ α(x − vt)/
√

v2 − 1. It is easily checked that
this is indeed a solution of the field equation (75) provided α2 is again given by equation (81).
Note that with this choice of α

cos

(
φ(x)

2

)
= α

p∑
i=1

d̃i . (95)

Another solution for any odd integer p is

sin

(
φ(x)

2

)
= α

p∑
i=1

s̃i (96)

where s̃i is as defined in equation (14) with ηp ≡ α(x − vt)/
√

m(v2 − 1). Thus, this solution
is strictly valid only if m > 0. It is easily checked that this is indeed a solution of the field
equation (75) provided α2 is as given by equation (86). Note that with this choice of α,

cos

(
φ(x)

2

)
= α

p∑
i=1

c̃i . (97)

Finally, for p = 2 we have the solution

sin

(
φ(x)

2

)
= mαs1s2 (98)

where s1,2 is as defined in equation (5) with ξ2 ≡ α(x − vt)/
√

v2 − 1. It is easily checked that
this is indeed a solution of the field equation (75) provided α2 satisfies equation (89). Note
that with this choice of α

cos

(
φ(x)

2

)
= α

2∑
i=1

di. (99)
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6. Boussinesq equation

The Boussinesq equation is given by

utt − uxx + 3(u2)xx − uxxxx = 0. (100)

The periodic one-soliton solution of this equation is known to be

u(x, t) = −2α2 dn2(α[x − vt]) + βα2 (101)

where

2(4 − 2m − 3β)α2 = v2 − 1. (102)

Thus v2 < 1 if β � 4/3 and v2 > 1 if β � 2/3. For 2/3 < β < 4/3, v2 changes sign at some
value of m (0 � m � 1). Note that in the limit m → 1 and β = 2, this solution goes over to
the one-soliton solution

u(x, t) = 2α2 tanh2(α[x − vt]) α =
√

1 − v2

8
. (103)

Using the above periodic solution, we then obtain several new solutions via linear
superposition:

u(x, t) = −2α2
p∑

i=1

d2
i (α[x − vt]) + βα2 (p = 1, 2, 3, . . .). (104)

It is easy to check that this is an exact solution to the Boussinesq equation (100) provided

2[4 − 2m − 3β − 6A1(p,m)]α2 = v2 − 1. (105)

Here use has been made of the identity (6) with A1(p,m) given by equations (7) and (10). It
may be noted that A1(p,m) � 0.

7. Summary and conclusions

In this paper, we have made an attempt to see under what conditions a specific kind of linear
superposition principle works even for nonlinear equations. We believe that this is an important
issue which can help in classifying solutions of nonlinear equations. In view of the remarkable
identities satisfied by Jacobi elliptic functions, our linear superposition approach is not only
valid for integrable systems such as the KdV and KP equations, but also for nonintegrable
systems such as λφ4 theory. It would indeed be worthwhile to obtain such solutions for other
nonlinear systems where elliptic functions play a role in the space of exact solutions.

When is our superposition method expected to work? We have examined several other
partial differential equations and find that our method works whenever the periodic one-soliton
solution is a sum of integer powers of Jacobi elliptic functions of the form

u(x, t) =
∑

i

aisni(α[x − ct],m). (106)

Another question which comes to mind is how the solutions obtained in this paper are
related to previously known solutions. At first sight, it would appear that our procedure
has given new solutions, but a closer investigation reveals that our solutions are expressible in
terms of previous solutions via a nonlinear generalization of Landen’s formulae which connect
Jacobi elliptic functions with two different modulus parameters [13]. The reader is referred to
[13] for more details of this unusual and nontrivial generalization.



10100 F Cooper et al

Acknowledgments

One of us (AK) thanks the Department of Physics at the University of Illinois at Chicago for
hospitality. We gratefully acknowledge grant support from the US Department of Energy.

References

[1] Drazin P and Johnson R 1989 Solitons: an Introduction (Cambridge: Cambridge University Press)
Ablowitz M and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM)
Newell A 1985 Solitons in Mathematics and Physics (Philadelphia: SIAM)

[2] Khare A and Sukhatme U 2002 Phys. Rev. Lett. 88 244101
[3] Khare A and Sukhatme U 2002 Cyclic identities involving Jacobi elliptic functions J. Math. Phys. 43 3798

Khare A, Lakshminarayan A and Sukhatme U 2002 Cyclic identities involving Jacobi elliptic functions-II
Preprint math-ph/0207019

[4] Mollenauer L F, Stolen R H and Gordon J P 1980 Phys. Rev. Lett. 45 1095
[5] Maneuf S and Reynaurd F 1988 Opt. Commun. 65 325
[6] Aitchison J S et al 1990 Opt. Lett. 15 471
[7] Liu S, Fu Z, Liu S and Zhao Q 2001 Phys. Lett. A 289 69

Fu Z, Liu S, Liu S and Zhao Q 2001 Phys. Lett. A 290 72
Parkes E J, Duffy B R and Abbott P C 2002 Phys. Lett. A 295 280

[8] Hirota R 1973 J. Math. Phys. 14 810
Otwinowski M, Paul R and Laidlaw W G 1988 Phys. Lett. A 128 483
Wang M L 1995 Phys. Lett. A 216 169
Yan C 1996 Phys. Lett. A 224 77
Parkes E J and Duffy B R 1997 Phys. Lett. A 229 217
Yang L, Liu J and Yang K 2001 Phys. Lett. A 278 267

[9] For the properties of Jacobi elliptic functions, see, for example, Abramowitz M and Stegun I 1964 Handbook
of Mathematical Functions (New York: Dover)

Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series and Products (New York: Academic)
[10] See, for example, Carr L D, Clark C W and Reinhardt W P 2000 Phys. Rev. A 62 063610

Carr L D, Clark C W and Reinhardt W P 2000 Phys. Rev. A 62 063611, and references therein
[11] Rajaraman R 1978 Solitons and Instantons (Amsterdam: North Holland)
[12] Aubry S 1976 J. Chem. Phys. 64 3392
[13] Khare A and Sukhatme U 2002 A generalization of Landen’s quadratic transformation formulas for Jacobi

elliptic functions Preprint math-ph/0204054
Reinhardt W, Khare A and Sukhatme U 2002 Comment on ‘Linear superposition in nonlinear equations’

Preprint UICHEP-TH/02-5
Cayley A 1876 An Elementary Treatise on Elliptic Functions (Cambridge: Cambridge University Press)


